

### Gait Recognition from 2D to 3D

### 报告人:刘鑫辰 京东探索研究院



## Outline



05 Conclusion



## 01

## Introduction



#### What is Gait Recognition ?

# LEEFE EN EN LEEFE

Identify the same person across multiple cameras with gait biometrics, i.e., the motion patterns of human walking [1].

#### Advantages:

- 1. Remotely accessible
- 2. Non-contacting
- 3. Hard to impersonate
- 4. Robust to lightening variation and cloth changing

#### Challenges:

- 1. Noise of silhouette segmentation
- 2. Cross-view variance
- 3. Uncertainty in temporal pattern
- 4. Ambiguity of 3D bodies projected into 2D images

#### Applications:

- 1. ID authentication
- 2. Missing person search
- 3. Public security
- 4. ...

[1] Liang Wang, Tieniu Tan, Huazhong Ning, Weiming Hu: Silhouette Analysis-Based Gait Recognition for Human Identification. IEEE Trans. Pattern Anal. Mach. Intell. 25(12): 1505-1518 (2003)



#### **Gait Representations**





#### **Timeline of Gait Recognition**

|                            |          |                                | ţ                             | X                           |                                         |                                |                                    | ()                                |                                                 |                                  |
|----------------------------|----------|--------------------------------|-------------------------------|-----------------------------|-----------------------------------------|--------------------------------|------------------------------------|-----------------------------------|-------------------------------------------------|----------------------------------|
| The first gait rec. method |          | The first deep methods         | GaitNet                       | DBNGait [25<br>CASIA-B ≈ 60 | 5]<br>0 7 VGR-Net [27]                  | PoseGait [28]<br>CASIA-B ≈ 74  | GaitSet [30]                       | PartialRNN [31]<br>CASIA-B ≈ 86.5 | GLN [33]<br>CASIA-B ≈ 89.5                      | 3DCNNGait [35]<br>CASIA-B ≈ 90.4 |
| [20]                       |          | [22,23]                        |                               |                             |                                         |                                |                                    |                                   |                                                 |                                  |
| 1997                       | 2008     | 2015                           | 2016                          | 2017                        | 2018                                    |                                | 2019                               |                                   | 2020                                            | 3D                               |
|                            |          |                                |                               | -                           |                                         | -                              |                                    |                                   |                                                 |                                  |
| sha                        | The firs | st<br>1 (21)                   |                               |                             | Gait [26]<br>-B ≈ 73 5                  | Diser                          | ntangledGait [29]<br>ASIA-B ≈ 79 9 | GaitP<br>CASIA                    | art [32] HMR<br>B ≈ 88 8 CASI4                  | Gait [34]<br>A-B ≈ 89 5          |
| 510                        |          | The first CNN<br>Method [Zhang | l + Contras<br>, Liu, et al., | tive Loss<br>ICASSP16]      | The first S-T Att<br>Method [Li, Liu, e | ention-based<br>et al., TMM19] |                                    | The f                             | irst Cross-domain Me<br>eng, Liu, et al., ISCAS | ethod<br>21]                     |

1. Alireza Sepas-Moghaddam, Ali Etemad: Deep Gait Recognition: A Survey. CoRR abs/2102.09546 (2021)

2. Cheng Zhang, Wu Liu, et al., : Siamese neural network based gait recognition for human identification. ICASSP 2016: 2832-2836

3. Shuangqun Li, Wu Liu, Huadong Ma: Attentive Spatial-Temporal Summary Networks for Feature Learning in Irregular Gait Recognition. IEEE Trans. Multim. 21(9): 2361-2375 (2019)

4. Jinkai Zheng, Xinchen Liu, et al. : TraND: Transferable Neighborhood Discovery for Unsupervised Cross-Domain Gait Recognition. ISCAS 2021: 1-5



## 02

### **Related Work**



#### **Existing Gait Datasets**

| Dataset                | Year | Subject # | Sequence # | Cam # | # Data Type                     |   | Wild | 3D-View |
|------------------------|------|-----------|------------|-------|---------------------------------|---|------|---------|
| CASIA-A [17]           | 2003 | 20        | 240        | 3     | RGB                             | × | ×    | ×       |
| USF HumanID [12]       | 2005 | 122       | 1,870      | 2     | RGB                             | × | ×    | ×       |
| CASIA-B [20]           | 2006 | 124       | 13,680     | 11    | RGB, Silh.                      | × | ×    | ×       |
| CASIA-C [14]           | 2006 | 153       | 1,530      | 1     | Infrared, Silh.                 | 1 | ×    | ×       |
| OU-ISIR Speed [15]     | 2010 | 34        | 306        | 1     | Silh.                           | 1 | ×    | ×       |
| OU-ISIR MV [10]        | 2010 | 168       | 4,200      | 25    | Silh.                           | × | ×    | ×       |
| OU-LP [6]              | 2012 | 4007      | 31,368     | 4     | Silh.                           | × | ×    | ×       |
| OU-MVLP [13]           | 2018 | 10,307    | 259,013    | 14    | Silh.                           | × | ×    | ×       |
| OU-MVLP Pose [1]       | 2020 | 10,307    | 259,013    | 14    | 2D Pose                         | × | ×    | ×       |
| GREW <sup>*</sup> [22] | 2021 | 26,345    | 128,671    | 882   | Silh., 2D/3D Pose, Flow         | × | 1    | ×       |
| Gait3D                 | -    | 4,000     | 25,309     | 46    | Silh., 2D/3D Pose, 3D Mesh&SMPL | ✓ | 1    | ✓       |

[1] Sudeep Sarkar, P. Jonathon Phillips, Zongyi Liu, Isidro Robledo Vega, Patrick Grother, Kevin W. Bowyer: The HumanID Gait Challenge Problem: Data Sets, Performance, and Analysis. IEEE Trans. Pattern Anal. Mach. Intell. 27(2): 162-177 (2005)

[2] Shiqi Yu, Daoliang Tan, Tieniu Tan: A Framework for Evaluating the Effect of View Angle, Clothing and Carrying Condition on Gait Recognition. ICPR (4) 2006: 441-444

[3] Yasushi Makihara, Hidetoshi Mannami, Akira Tsuji, Md. Altab Hossain, Kazushige Sugiura, Atsushi Mori, Yasushi Yagi: The OU-ISIR Gait Database Comprising the Treadmill Dataset. IPSJ Trans. Comput. Vis. Appl. 4: 53-62 (2012)

[4] Yasushi Makihara, Atsuyuki Suzuki, Daigo Muramatsu, Xiang Li, Yasushi Yagi: Joint Intensity and Spatial Metric Learning for Robust Gait Recognition. CVPR 2017: 6786-6796

[5] Md. Zasim Uddin, Trung Ngo Thanh, Yasushi Makihara, Noriko Takemura, Xiang Li, Daigo Muramatsu, Yasushi Yagi: The OU-ISIR Large Population Gait Database with real-life carried object and its performance evaluation. IPSJ Trans. Comput. Vis. Appl. 10: 5 (2018)

[6] Noriko Takemura, Yasushi Makihara, Daigo Muramatsu, Tomio Echigo, Yasushi Yagi: Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition. IPSJ Trans. Comput. Vis. Appl. 10: 4 (2018)

[7] Zheng Zhu, Xianda Guo, Tian Yang, Junjie Huang, Jiankang Deng, Guan Huang, Dalong Du, Jiwen Lu, Jie Zhou: Gait Recognition in the Wild: A Benchmark. ICCV, 2021.

#### **Existing Gait Datasets**

#### JDT 京东科技





#### **Existing Gait Recognition Methods**

- Early Work (Before 2015):
  - Model-based:
    - 3D voxel-based [IJCB11]
  - Appearance-based:
    - Gait Energy Image [TPAMI06]
    - Chrono-Gait Image [TPAMI12]
- Recent Work:
  - GEI+CNN/SNN:
    - SiaNet [ICASSP16]
    - GEINet [ICB16]
  - Sequence/Set + RNN/LSTM/CNN:
    - ASTSN [TMM19]
    - GaitSet [AAAI19]
    - GaitPart [CVPR20]
    - GLN [ECCV20]
  - Pose + GCN
    - PoseGait [PR20]
    - GaitGraph [arXiv21]

| Results on CASIA-B |              |       |      |              |  |  |
|--------------------|--------------|-------|------|--------------|--|--|
|                    |              | Probe |      |              |  |  |
| Туре               | Method       | NM    | BG   | CL           |  |  |
| appearance         | GaitNet [1]  | 91.6  | 85.7 | 58.9         |  |  |
| appearance         | GaitSet [2]  | 95.0  | 87.2 | 70.4         |  |  |
| -Daseu             | GaitPart [3] | 96.2  | 91.5 | <b>78.</b> 7 |  |  |
| model              | PoseGait [6] | 60.5  | 39.6 | 29.8         |  |  |
| -based             | GaitGraph    | 87.7  | 74.8 | 66.3         |  |  |

| Results on Gait3D |             |         |         |         |       |  |  |  |
|-------------------|-------------|---------|---------|---------|-------|--|--|--|
| Input Size (V     | V×H)        |         | 88×128  |         |       |  |  |  |
| Methods           | Publication | R-1 (%) | R-5 (%) | mAP (%) | mINP  |  |  |  |
| GEINet [32]       | ICB 2016    | 7.00    | 16.30   | 6.05    | 3.77  |  |  |  |
| GaitSet [5]       | AAAI 2019   | 42.60   | 63.10   | 33.69   | 19.69 |  |  |  |
| GaitPart [9]      | CVPR 2020   | 29.90   | 50.60   | 23.34   | 13.15 |  |  |  |
| GLN [15]          | ECCV 2020   | 42.20   | 64.50   | 33.14   | 19.56 |  |  |  |
| GaitGL [22]       | ICCV 2021   | 23.50   | 38.50   | 16.40   | 9.20  |  |  |  |
| CSTL [16]         | ICCV 2021   | 12.20   | 21.70   | 6.44    | 3.28  |  |  |  |
| PoseGait [21]     | PR 2020     | 0.24    | 1.08    | 0.47    | 0.34  |  |  |  |
| GaitGraph [38]    | arXiv 2021  | 6.25    | 16.23   | 5.18    | 2.42  |  |  |  |



## 03

## The Gait3D Benchmark

#### Why Gait Recognition in the Wild with 3D information?

- Problem of current gait recognition:
  - Information loss of 2D silhouette and 2D/3D skeleton



**JDT** 京东科技

#### What do we need and what are our challenges ?

#### • In the wild



#### Walking Style:

- Natural Walking
- Irregular routes
- Varied speed

#### **Environment Settings:**

- Occlusions
- Arbitrary 3D viewpoint
- Background clutter



#### • Large scale and Diverse



#### High-quality





#### **Gait3D Construction**

- A Large-scale In-the-Wild 3D Gait Recognition Benchmark
  - Construction:

1. Person detection and tracking from video frames

2. Cross-camera matching of the same ID using ReID feature

3. Manually filtering out the wrong sequences in individual IDs

- 4. Generation of gait representations from sequences:
  1) silhouettes using HRNet (finetuned)
  2) 2D pose using HRNet (finetuned)
  3) 3D SMPL & mesh using ROMP (finetuned)
  - 4) 3D pose using ROMP (finetuned)

#### • A Large-scale In-the-Wild 3D Gait Recognition Benchmark

• Statistics:

**Gait3D Dataset** 

- 1,090-hour videos of 7 days from unconstrained environment, i.e., a large supermarket
- 39 cameras with various viewpoints, 1,920x1,080 resolution, and 25 FPS
- 4,000 IDs, 25,309 sequences, 3,279,239 bounding boxes
- Protocol:
  - 3,000/1,000 IDs for training/testing
  - 1,000/5,369 sequences for query/gallery of testing set
  - Metrics: Rank-1, Rank5, mAP, mINP





**JDT** 京东科技

Scan the QR code for the dataset!



#### **Benchmarking of SOTA Methods**

Comparison of the state-of-the-art gait recognition methods on Gait3D.

| Input Size (W×H) |             | 88×128  |         |         | $44 \times 64$ |         |         |         | Results of cross-domain experiments |   |              |                |         |          |                |
|------------------|-------------|---------|---------|---------|----------------|---------|---------|---------|-------------------------------------|---|--------------|----------------|---------|----------|----------------|
| Methods          | Publication | R-1 (%) | R-5 (%) | mAP (%) | mINP           | R-1 (%) | R-5 (%) | mAP (%) | mINP                                |   |              |                |         | (perimen | 13.            |
| GEINet [32]      | ICB 2016    | 7.00    | 16.30   | 6.05    | 3.77           | 5.40    | 14.20   | 5.06    | 3.14                                |   | Source       | Target         | R-1 (%) | R-5 (%)  | mAP (%)        |
| GaitSet [5]      | AAAI 2019   | 42.60   | 63.10   | 33.69   | 19.69          | 36.70   | 58.30   | 30.01   | 17.30                               |   | CASIA-B [56] |                | 6.90    | 14.60    | 4.64           |
| GaitPart [9]     | CVPR 2020   | 29.90   | 50.60   | 23.34   | 13.15          | 28.20   | 47.60   | 21.58   | 12.36                               |   | OU-LP [17]   | Gait3D         | 6.10    | 12.40    | 4.42           |
| GLN [15]         | ECCV 2020   | 42.20   | 64.50   | 33.14   | 19.56          | 31.40   | 52.90   | 24.74   | 13.58                               |   | GREW [63]    |                | 16.50   | 31.10    | 11.71          |
| GaitGL [22]      | ICCV 2021   | 23.50   | 38.50   | 16.40   | 9.20           | 29.70   | 48.50   | 22.29   | 13.26                               | - |              | CASIA D [56]   | 66 71   | 71.50    | 22.00          |
| CSTL [16]        | ICCV 2021   | 12.20   | 21.70   | 6.44    | 3.28           | 11.70   | 19.20   | 5.59    | 2.59                                |   | Gait3D       | $OIJ_I P [17]$ | 97.84   | 99 38    | 55.88<br>68.06 |
| PoseGait [21]    | PR 2020     | 0.24    | 1.08    | 0.47    | 0.34           | 23      | -       | -       | 2                                   |   | Gall5D       | GREW [63]      | 43.86   | 60.89    | 28.06          |
| GaitGraph [38]   | arXiv 2021  | 6.25    | 16.23   | 5.18    | 2.42           | -       | -       | -       | -                                   |   | I            |                |         |          |                |

#### **Insights**:

- 1. Model-based approaches are greatly worse than model-free methods due to information loss.
- 2. There is a huge gap between the in-the-lab dataset and in-the-wild application. Our Gait3D enables the model to learn more generalized gait representations.





The effect of frame numbers in sequences.





#### **Insights:**

- 1. The best performance occurs around 30 frames per sequence in the training phase.
- 2. The performance grows stably with more training IDs and testing frames.



## 04

### **Our Methods**

#### SMPLGait framework





The architecture of the Silhouette Learning Network (SLN).

|          | Layers           | Kernel # | Kernel Size | Stride | Padding |
|----------|------------------|----------|-------------|--------|---------|
|          | Conv1            | 64       | 5×5         | 1      | 2       |
|          | LeakyReLU (0.01) | -        | -           | -      |         |
|          | Conv2            | 64       | 3×3         | 1      | 1       |
|          | LeakyReLU (0.01) | -        | -           | -      | -       |
|          | Max Pooling      | -        | 2×2         | 2      | 0       |
| <u> </u> | Conv3            | 128      | 3×3         | 1      | 1       |
| SIN      | LeakyReLU (0.01) | -        | -           | -      | -       |
|          | Conv4            | 128      | 3×3         | 1      | 1       |
|          | LeakyReLU (0.01) | -        | -           | -      | -       |
|          | Max Pooling      | -        | 2×2         | 2      | 0       |
|          | Conv5            | 256      | 3×3         | 1      | 1       |
|          | LeakyReLU (0.01) | -        | -           | -      | -       |
|          | Conv6            | 256      | 3×3         | 1      | 1       |
|          | LeakyReLU (0.01) | -        | -           | -      | -       |

The architecture of the 3D Spatial Transformation Network (3D-STN).

| Layers | Neuron #     | Dropout Rate |
|--------|--------------|--------------|
| FC1    | 128          | 0.0          |
| BN1    | -            | -            |
| ReLU   | -            | -            |
| FC2    | 256          | 0.2          |
| BN2    | -            | -            |
| ReLU   | -            | -            |
| FC3    | $h \times w$ | 0.2          |
| BN3    | -            | -            |
| ReLU   | -            | -            |



| e e i i i p     |             |         |         |         |       |         |         |         |       |
|-----------------|-------------|---------|---------|---------|-------|---------|---------|---------|-------|
| Input Size (V   | 88×128      |         |         |         | 44×64 |         |         |         |       |
| Methods         | Publication | R-1 (%) | R-5 (%) | mAP (%) | mINP  | R-1 (%) | R-5 (%) | mAP (%) | mINP  |
| GEINet [32]     | ICB 2016    | 7.00    | 16.30   | 6.05    | 3.77  | 5.40    | 14.20   | 5.06    | 3.14  |
| GaitSet [5]     | AAAI 2019   | 42.60   | 63.10   | 33.69   | 19.69 | 36.70   | 58.30   | 30.01   | 17.30 |
| GaitPart [9]    | CVPR 2020   | 29.90   | 50.60   | 23.34   | 13.15 | 28.20   | 47.60   | 21.58   | 12.36 |
| GLN [15]        | ECCV 2020   | 42.20   | 64.50   | 33.14   | 19.56 | 31.40   | 52.90   | 24.74   | 13.58 |
| GaitGL [22]     | ICCV 2021   | 23.50   | 38.50   | 16.40   | 9.20  | 29.70   | 48.50   | 22.29   | 13.26 |
| CSTL [16]       | ICCV 2021   | 12.20   | 21.70   | 6.44    | 3.28  | 11.70   | 19.20   | 5.59    | 2.59  |
| PoseGait [21]   | PR 2020     | 0.24    | 1.08    | 0.47    | 0.34  | -       | -       | -       | -     |
| GaitGraph [38]  | arXiv 2021  | 6.25    | 16.23   | 5.18    | 2.42  | -       | -       | -       | -     |
| SMPLGait w/o 3D | Ours        | 47.70   | 67.20   | 37.62   | 22.24 | 42.90   | 63.90   | 35.19   | 20.83 |
| SMPLGait        | Ours        | 53.20   | 71.00   | 42.43   | 25.97 | 46.30   | 64.50   | 37.16   | 22.23 |

Comparison of the state-of-the-art gait recognition methods on Gait3D.

#### Insights:

1. The performance is significantly improved with the addition of 3D mesh.



#### **Temporal Modeling on Gait3D**



#### ✓ Motivation:

- > 3D convolution-based methods have the problem of feature misalignment.
- > Existing methods can hardly model varied temporal dynamics of gait sequences in unconstrained scenes.
- Existing methods based on 3D convolution for temporal modeling have the problem of large-scale model parameters and difficulty in training.

Jinkai Zheng, Xinchen Liu, Xiaoyan Gu, Yaoqi Sun, Chuang Gan, Jiyong Zhang, Wu Liu, Chenggang Yan: Gait Recognition in the Wild with Multi-hop Temporal Switch. ACM MM 2022



#### MTSGait



The architecture of the MTSGait framework for modeling spatial and multi-hop temporal gait features

#### Illustration of the uni-direction, bi-direction, and multi-hop temporal switch operation

- ✓ MTSGait can learn spatial and multi-scale temporal information simultaneously.
- ✓ MTSGait avoids the problem of large-scale model parameters and difficulty in training 3D CNN.
- ✓ We propose a new sampling strategy, i.e., Non-cyclic continuous sampling, to learn more robust temporal features.

| Style                | Uni-direction           | Bi-direction            |  |  |  |  |
|----------------------|-------------------------|-------------------------|--|--|--|--|
| Time<br>Scale        | T=1 T=2 T=3 T=4 ··· T=N | T=1 T=2 T=3 T=4 ··· T=N |  |  |  |  |
| Temporal<br>Switch 1 |                         |                         |  |  |  |  |
| Temporal<br>Switch 2 |                         |                         |  |  |  |  |
| :                    | :                       | :                       |  |  |  |  |
| Temporal<br>Switch k |                         |                         |  |  |  |  |

Jinkai Zheng, Xinchen Liu, Xiaoyan Gu, Yaoqi Sun, Chuang Gan, Jiyong Zhang, Wu Liu, Chenggang Yan: Gait Recognition in the Wild with Multi-hop Temporal Switch. ACM MM 2022

#### **Experiments**

| Results on Gait3D dataset |        |        |       |       |  |  |  |  |
|---------------------------|--------|--------|-------|-------|--|--|--|--|
| Methods                   | Rank-1 | Rank-5 | mAP   | mINP  |  |  |  |  |
| PoseGait [17]             | 0.24   | 1.08   | 0.47  | 0.34  |  |  |  |  |
| GaitGraph [29]            | 6.25   | 16.23  | 5.18  | 2.42  |  |  |  |  |
| GEINet [25]               | 5.40   | 14.20  | 5.06  | 3.14  |  |  |  |  |
| GaitSet [2]               | 36.70  | 58.30  | 30.01 | 17.30 |  |  |  |  |
| GaitPart [4]              | 28.20  | 47.60  | 21.58 | 12.36 |  |  |  |  |
| GLN [9]                   | 31.40  | 52.90  | 24.74 | 13.58 |  |  |  |  |
| GaitGL [19]               | 29.70  | 48.50  | 22.29 | 13.26 |  |  |  |  |
| CSTL [10]                 | 11.70  | 19.20  | 5.59  | 2.59  |  |  |  |  |
| SMPLGait [47]             | 46.30  | 64.50  | 37.16 | 22.23 |  |  |  |  |
| Ours w/o MTS              | 42.90  | 63.90  | 35.19 | 20.83 |  |  |  |  |
| Ours                      | 48.70  | 67.10  | 37.63 | 21.92 |  |  |  |  |

| Results of GREW dataset |        |        |         |         |  |  |  |  |
|-------------------------|--------|--------|---------|---------|--|--|--|--|
| Methods                 | Rank-1 | Rank-5 | Rank-10 | Rank-20 |  |  |  |  |
| PoseGait [17]           | 0.23   | 1.05   | 2.23    | 4.28    |  |  |  |  |
| GaitGraph [29]          | 1.31   | 3.46   | 5.10    | 7.51    |  |  |  |  |
| GEINet [25]             | 6.82   | 13.42  | 16.97   | 21.01   |  |  |  |  |
| GaitSet [2]             | 46.28  | 63.58  | 70.26   | 76.82   |  |  |  |  |
| GaitPart [4]            | 44.01  | 60.68  | 67.25   | 73.47   |  |  |  |  |
| GaitGL [19]             | 47.28  | 63.56  | 69.32   | 74.18   |  |  |  |  |
| Ours w/o MTS            | 50.42  | 67.89  | 74.28   | 79.38   |  |  |  |  |
| Ours                    | 55.32  | 71.28  | 76.85   | 81.55   |  |  |  |  |

#### Results on GREW dataset

JDT京东科技

#### **Results:**

- 1. Our method achieves superior performance on two public gait in-the-wild datasets, i.e., Gait3D and GREW, compared with state-of-the-art methods.
- 2. We can observe that our method is better than SMPLGait. This means that in addition to adding additional input data like 3D meshes, temporal modeling is also very important.

Jinkai Zheng, Xinchen Liu, Xiaoyan Gu, Yaoqi Sun, Chuang Gan, Jiyong Zhang, Wu Liu, Chenggang Yan: Gait Recognition in the Wild with Multi-hop Temporal Switch. ACM MM 2022



# 05

## Conclusion



#### Conclusion

- Contributions:
  - ✓ We believe that the next direction of gait recognition is gait recognition in the wild, especially in combination with dense 3D representations, such as 3D meshes.
  - ✓ There are many potential directions for this challenging task:
    - > How to design a model for learning more discriminative features directly from 3D meshes.
    - How to learn the temporal information of gait representation, because the walking speed and route in Gait3 D are irregular, it is significantly different from the datasets built in the lab.
    - How to fuse the multi-modal information like silhouette, 2D/3D skeleton, and 3D mesh for gait recognition in the wild.
- Discussion:
  - ✓ Dataset access:
    - case-by-case application via license
  - ✓ Ethic issues:
    - $\succ$  The involved subjects of the datasets are told to collect data for research purposes.
    - > The dataset can only be used for research purposes.
    - We will not release any human cognizable data like original video files, original RGB video frames, and RGB b ounding boxes of persons.



#### JDT 京东科技

#### **Team & Collaborators**



JD Explore Academy



Xinchen Liu



Wu Liu

Yaoqi Sun



Lingxiao He



Jiyong Zhang



Chuang Gan Xiao-Ping Zhang MIT-IBM Watson AI Lab Ryerson University



Tao Mei



Chenggang Yan





Jinkai Zheng



→ 图 斜 堂 院 信息工程研究所 INSTITUTE OF INFORMATION ENGINEERING,CAS



Toronto Metropolitan University



Xiaoyan Gu IIE, CAS







