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ABSTRACT
This demonstration presents an instant and progressive cross-modality
person search system, called “CMPS”. Through the system, users
can instantly find the lost children or elderly persons by simply
describing their appearance through speech. Unlike most existing
person search applications which have to cost much time to find
the probe images, CMPS will save more valuable time in the early
stage of losing. The proposed CMPS is one of the first attempts
towards instant and progressive person search leveraging the audio,
text, and visual modalities together. In detail, the system first takes
the speech that describes the appearance of a person as the input to
obtain a textual description by speech-to-text conversion. Then the
cross-modal search is performed by matching the textual embed-
ding with the visual representations of images in the learned latent
space. The searched images can be used as candidates for query ex-
pansion. If the candidates are not right, the user can quickly adjust
their description through speech. Once a right image is found, the
user can directly click it as a new query. Finally the system will
give the complete track of the lost person by once-click. On the
built CUHK-PEDES-AUDIOS dataset, the system can achieve 82.46%
rank-1 accuracy in real-time speed. Our code of CMPS is available
at https://github.com/SheldongChen/Search-People-With-Audio.
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1 INTRODUCTION
Person search or re-identification (Re-ID) is an important and chal-
lenging task in the multimedia and computer vision communities.
With wide real-world applications such as intelligent video surveil-
lance, smart retailing, etc. [17, 24], this task aims at searching for
the same person captured by multiple non-overlapping cameras. It
has achieved excellent results due to the deep learning-based model
and large-scale labeled data [10, 17–21].
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Figure 1: The workflow of our cross-modality system. 1) the
system first takes the speech or text that describes the ap-
pearance of a person as the input; 2) the searched images
can be used as candidates for query expansion of speech and
text; 3) If the candidates are not right, the user can quickly
adjust their query; 4) once right images are found, the user
can directly click them as new query; 5) the systemwill give
the complete track of the lost person by once-click.

However, existing person search or Re-ID methods usually use
images of a specific person as the probe [7, 14], which has limita-
tions in real-world urgent scenarios. For example, when a mom lost
her child in the mall, she knows clearly what her child is wearing
today, but she cannot provide a photo. The time is very urgent in the
early stage of losing. The fastest method is directly describing the
child through speech or text description, then find more candidate
images as query expansion. This is a common situation in real-life,
while traditional Re-ID methods often neglect this situation. Al-
though there have been some methods [4, 11, 12] for text-based
person search in recent years, they only consider text as input.
Speech is faster and more convenient than inputting text. There-
fore, in this paper, we develop a simple, convenient, and real-time
person search system based on multi-modality interaction with
speech, text, and image as input.

Due to the difficulty of fine-grained cross-modal matching, cross-
modal person search faces several challenges, such as understanding
of long sentences, accurate speech recognition, compatibility with
diverse inputs, and so on. Fortunately, with the gradual maturity
of natural language processing and speech recognition, and the
remarkable development of computer vision[3, 6, 15, 22], we can
design a progressive cross-modality system, which is easy-to-use
and effective for this task. To this end, we design a cross-modal per-
son search system of which the workflow is shown in Figure 1. This
system has several featured properties: 1) It provides a convenient
input and interaction mode, which takes the audio of speech as the
input to search for a target person captured by cameras. By this
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Figure 2: Architecture of the proposed network.

means, users will not only interact with the system efficiently by
speech instead of typewriting, but also provide more fine-grained
and detailed descriptions of the target person. 2) This system per-
forms person search in a progressive manner to guarantee both the
accuracy and speed, users can interactively input new queries and
query expansion, which makes it able to find more accurate results
with less time consumption[13].

2 METHODOLOGY
For solving this task, we design a new pseudo-siamese network
which learns visual features and vocal features by two parallel
subparts, as shown in Figure 2.

The first subpart is a Convolutional Neural Network (CNN), as
shown in the green dotted box in Figure 2. We use MobileNet V2
[16] as the backbone of this subpart for extracting visual features
due to its efficiency. After the feature part of MobileNet, we replace
the pooling layer with the conv layer. To search persons with the
image as the probe, we match images with the Foreground-aware
Pyramid Reconstruction (FPR) [8], which can alleviate the mis-
matching caused by occlusion.

The second subpart adopts a Recurrent Neural Network (RNN),
as shown in the red dotted box in Figure 2.We first use DeepSpeech2
[1] for speech recognition and use BERT [5] to get word embedding
of the description. Then we feed the word embedding into Long
Short-Term Memory [9] and the attention layer. Instead of softmax,
we use sigmoid as a part of our attention layer, because it can solve
the matching error better caused by sentences of different lengths.

Based on the above pseudo-siamese networks, we design a spe-
cial loss function to optimize the whole network.

𝐿 = 𝐿𝐶𝑇 + 𝐿𝐶𝐼 + 𝐿𝐴𝐵𝑆 + 𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡 + 𝐿𝐹𝑃𝑅, (1)

𝐿𝐴𝐵𝑆 = E(
∑
𝑖

(𝑃𝑇 · |𝑃𝑇 − 𝑃𝐼 |) +
∑
𝑖

(𝑃𝐼 · |𝑃𝐼 − 𝑃𝑇 |)), (2)

where 𝐿𝐶𝑇 and 𝐿𝐶𝐼 are the cross-entropy loss functions for images
and text, respectively. 𝐿𝐴𝐵𝑆 is used to balance the optimize of the
RNN subpart and CNN subpart. 𝑃𝑇 is ID label of text and 𝑃𝐼 is ID
label of images. 𝐿𝐹𝑃𝑅 [8] is FPR matching loss and 𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡 [23] is
triplet loss to learn the embedding space of speech and images.

3 THE SYSTEM AND EVALUATIONS
The interface of our cross-modal system is shown in Figure 3. In
our system, all models are trained on the CUHK-PEDES-AUDIOS
dataset. In this dataset, we generate an audio file by Text to Speech
for every text in CUHK-PEDES [12] and crop the images to 224×224
for the system.

Ourmodel is trained on one TITANRTXGPU for 100 epochs. The
ASR network is fine-tuned on the CUHK-PEDES-AUDIOS dataset

Figure 3: The interface of our cross-modal system. On the
left of the interface is the input area, and when beginning a
search, we can use different forms of input as probe. In the
middle of the interface is the search result, and on the right
is the candidate characters to show the tracks.

Table 1: The experimental results.

Method Rank1 Rank10 mAP

deeper LSTM Q+norm [2] 17.19 57.82 -
GNA-RNN [12] 19.05 53.64 -
Latent Co-attention [11] 25.94 60.48 -
PWM-ATH [4] 27.14 61.02 -

CMPS-Audio-Fast* 35.03 70.14 34.61
CMPS-Audio 40.00 73.91 38.11
CMPS-Audio-Image** 82.46 95.93 76.12
* CMPS-Audio-Fast uses Word2Vec as word embedding.
** CMPS-Audio-Image uses image as probe.

for 10 epochs. The experimental results are listed in table 1. In the
dataset, each picture has several descriptive sentences, so when
calculating our Rank and mAP, we take the average value of this
sentences. We referred to the previous papers and all the evalua-
tion indicators. From the results, we can observe that our system
outperforms existing real-time methods.

We quantitatively evaluate the operating speed of our system on
TITAN RTX GPU. Due to the lightweight network structure, our
network achieves excellent performance. Here we only compute
the algorithm time without the human operation. As the used Deep-
Speech2 can real-time recognize user’s speech, we do not count it
for search time. For the once CMPS-Audio-Fast search which uses
the word embedding instead of Bert, the search speed is 10 ms per
query. For the progressive CMPS-Audio-Image search with Bert,
the search speed is 333 ms per query.

4 CONCLUSIONS
We propose an instant and progressive person search system trough
cross-modality retrieval. It can be used in the urgent situations
where no probe image can be found. Users can directly find the
target person with speed description in real-time. The system also
supports the progressive search with searched images as query
extension. In the future, we will further implement the system on
more portable devices.We can also fusemore important information
in the query, such as face image on the identification card.
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